

quantity of memory the algorithm occupies to execute and store all the data according

to a fixed input size.

Typical pattern recognition system includes features extraction. This step is

determined during the development of the ML algorithm and is important to group the

information into a single vector and increase the robustness of the system.

1.1 Edge Machine Learning

In recent years the diffusion of ML enabled computers to use models to find patterns

and take decisions without requiring explicit programming. Due to the high

requirements of its development, ML has been initially used in high power computing

machines but the increasing interests in using its high versatility in distributed

environments lead to industry investing in deploying ML in smaller, cheaper and low

power devices.

The limits of these devices include low size memory and low computation

capabilities, but their reduced size makes them the only option for devices that need to

stay in small environments. The easiest way to deploy ML on microcontrollers is to

develop regular ML models and then compress them into microcontroller libraries.

For this study, three ML models have been selected for investigation: the Multilayer

Perceptron (MLP), the Support Vector Machine (SVM) and the Decision Tree (DT)

1.2 Multilayer Perceptron

An artificial neural network (ANN) mimics the functioning of biological neurons in

the field of data processing [2]. MLP is frequently preferred for classification among

the various types of ANN. The basic unit of the model is the neuron, which calculates

the sum of weighted inputs and produces an output based on an activation threshold.

The number of hidden layers between the input layer and the output layer varies

depending on the depth of the network. Each hidden layer increases the network

capabilities as well as its complexity.

1.3 Support Vector Machine

SVMs are suited both for regression and classification tasks, which is our case [3].

Unlike newer algorithms like neural networks, SVMs offer two key benefits: faster

processing speed and superior performance with a limited amount of training data. This

makes SVMs an excellent option for text classification problems where the number of

training samples is low and not easy to expand.

1.4 Decision Tree

A rooted ordered binary tree (T) that is labelled with a variable 𝑥𝑖 at each internal

node and a value of either 0 or 1 at each leaf is known as a deterministic decision tree.

An input 𝑥 establishes the final leaf and thereby the output, in a deterministic manner.

Computation begins at the root of the decision tree and ends at the final leaf. The

complexity of this model is determined by the tree's depth, which represents the

maximum number of queries made on the worst-case input. Further details on this type

of ANN can be found in [4].

2 Hardware used

Audible noise produced by water leaks usually falls within the range of a few kHz.

As this noise is in the form of a three-dimensional vibration, it can be detected by an

accelerometer with a sampling rate higher than the bandwidth being sensed. The

acquired signal can then be processed to generate a meaningful dataset, which can be

further utilized by ML algorithms.

The dataset utilized in this study was gathered via laboratory experimentation,

which involved a water circuit equipped with a pipe containing 4 taps of varying sizes

and distances from the sensor, simulating different leak conditions [5]. An IIS3DWB

accelerometer [6] was employed, which features an integrated digital conversion circuit

capable of producing 26,6 ksps, with a configurable acceleration range set to ±2g. The

evaluation board used in this study was equipped with an STM32L476RG

microcontroller, which offers an ARM Cortex-M4 processor unit, 2MB of Flash

memory, and 640KB of RAM.

These components are very small and have been chosen taking into account the

possibility of inserting them into existing pipes during trenchless relining activities.

Sklearn [7] and keras [8] are the Python libraries that were utilized to develop and

train machine learning models. The dataset was split into windows of 12288 samples

each (equivalent to approximately 0,46 seconds of recording), resulting in a training set

of 3600 signal windows, evenly distributed between leak and no-leak conditions.

During training and validation, 3000 samples were utilized, while 600 were reserved

for testing purposes.

The 3 features utilized in this study were automatically extracted. All these features

have been computed starting from the acceleration modulus and gravity component

removal. A scattering diagram showcasing these features is presented in Figure 1. The

3D diagram indicates that, despite having the same number of points for both classes,

it is still possible to easily differentiate between leak and no-leak conditions.

The main tool used to evaluate the performance and memory footprint of each

model on the microcontroller was STM32XCUBE-AI. To guarantee compatibility with

the STM32 utility, models from sklearn were converted to ONNX (an open format

designed for representing machine learning models), whereas the MLP network created

using the keras library was instead natively compatible with the tool.

To emphasize the distinctions between ML models executed on microcontrollers,

the algorithms were not optimized for the application during training. This approach

eliminates the impact of model optimization, and parameters such as computational

complexity and hardware requirements were evaluated at each model type's worst case.

For this reason, models were generated by exploring various activation functions and

neural topologies until a suitable and equivalent classification error was achieved for

each algorithm.

Figure 1 Diagram of the distribution of the extracted features.

The decision tree model was trained without any limitations on the possible number

of branches and leaves. This can result in rules being generated for rare cases, which

can lead to an increase in the size of the model. Consequently, the final trained decision

tree model had 190 leaves and 379 nodes.

The SVM model required 767 iterations for training, and 584 leak and 604 no leak

samples were used to calculate the SVM classifier.

The MLP network consists of two consecutive dense layers, each having 512

neurons, followed by a flatten layer. The selu (scaled exponential linear units)

activation function was chosen for the dense layers, while the sigmoid activation

function was chosen for the final layer.

This selection was based on the need for a small MLP network size and low

inference error. Dropout layers were used during training to reduce overfitting.

3 Results

In order to demonstrate the differences in complexity between different models,

they have been trained until the errors are comparable in at least one of the two classes.

The characteristics of these models are presented in Table 1.

Table 1 Performance comparison among the three proposed models.

After training and converting the models with XCUBE-AI, their performance has

been evaluated in a long-term scenario using a complete recording.

 Figure 2 shows the outputs of the three models, where a value of 1 indicates a

regular condition, while a value of 0 indicates leakage. The reference value reflects the

true classification of the recording, where a tap was opened and then closed. The SVM

model has the highest error rate in no-leak conditions, resulting in numerous false leak

classifications, as shown in the corresponding plot.

The output signal of each of the ML algorithms is noisy, making it difficult to use

in a real-case scenario. Therefore, it has been filtered by calculating the mean of 32

consecutive prediction values and assigning a value of 1 or 0 if the result is higher or

lower than its middle value. Figure 3 shows the resulting filtered signals. The filter

introduces a delay of approximately 15 seconds, which is relatively insignificant for the

leakage detection use case, as a fast response is not required.

Model Error on

leaks

Error on

no leaks

Number

of MACCs

Ram

(KB)

Memory

flash (KB)

MLP 12% 8% 277515 6.09 1020

SVM 24.3% 5.3% 35640 8.13 48.16

DT 6% 8.3% 13 2.1 16.96

Figure 2 ML inference results related to the models.

Figure 3 Filtered inference.

4 Conclusions

It is crucial to choose the appropriate ML algorithm for a given situation when

attempting to face problems using ML techniques. In the context of embedded systems,

this decision is also affected by memory usage, feature extraction, and energy

limitations.

In the case of detecting leaks, the extracted features are highly indicative of the

actual experimental data, which allows for the use of low-resource algorithms such as

decision trees that can achieve comparable accuracy to more complex systems. To

reduce noise in the output signal, the last step involves a filter that introduces a delay

while increasing the algorithm's performance with a relatively low computational

effort.

Future research will focus on analysing the computational complexity of the three

algorithms in terms of execution time and CPU cycles, as well as exploring new ML

models and feature extraction methods to enhance overall performance while reducing

hardware resource requirements.

Acknowledgments This work has been partially financed by the Project

“TiSento” (Azione 1.1.5. - POC Sicilia 2014/2020 Asse 1 - PO FESR 2014/2020).

References

1. L. Mistretta, G. C. Giaconia, A. Valenza, E. Napoli, C. Gianguzzi, M. L. Presti e F. d. Puma,

«Embedding Monitoring Systems for Cured-In-Place Pipes,» Applepies, 2016.

2. Various, «Artificial Neural Network,» [Online]. Available:

https://en.wikipedia.org/wiki/Artificial_neural_network.

3. B. Stecanella, «Support Vector Machines (SVM) Algorithm Explained,» [Online]. Available:

https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/.

4. H. Buhrman and R. de Wolf, “Complexity measures and decision tree complexity: a survey,”

Elsevier, 2002.

5. F. Lo Valvo and G. C. Giaconia, “Algoritmi di Machine Learning implementati su Sistemi a

Microcontrollore,” Palermo, 2022.

6. STMicroelectronics, “Iis3dwb datasheet,” 2020. [Online]. Available:

https://www.st.com/resource/en/datasheet/iis3dwb.pdf.

7. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine

Learning Research, 2011.

8. Chollet, Francois and a. others, “Keras,” GitHub, 2015. [Online]. Available:

https://github.com/fchollet/keras.

